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Abstract. Experimental and theoretical studies in large ionic helium clusters have suggested the presence
of a diatomic (and occasionally triatomic) charged molecular core surrounded by the other atoms which
are bound to it by weaker interactions [1–3]. The understanding of the interactions between the system
He+

2 and an additional He atom of the cluster is therefore important in order to start modelling the
full cluster interaction potential. In the present work we carry out a new set of calculations on the full
potential and on the bound states supported by the He+

2 isolated ion and further extend them to generate a
Rigid Rotor (RR) potential energy surface (PES) for the triatomic system with He+

2 kept at its equilibrium
geometry (2.0 a.u.). The 13 bound states which were found and the overall angular anisotropy that exists for
this Potential Energy Surface (PES) are discussed in detail. We additionally show results of calculations
on the surface vibrational extension to nine different values of the He+

2 interatomic distance, thereby
generating a fuller, three-dimensional interaction potential. A simpler modelling of the latter via “Pseudo
Rigid Rotor” calculations for the bound states with a vibrationally excited core is also presented and
discussed.

PACS. 36.40.Wa Charged clusters – 31.50.Gh Surface crossings, non-adiabatic couplings –
31.50.Bc Potential energy surfaces for ground electronic states – 31.15.Ar Ab initio calculations

1 Introduction

Several experiments have been carried out in recent times
on helium clusters [1–5] since the possibility of produc-
ing them by supersonic expansions in molecular beams
and the great interest in the superfluidity features of this
solvent make them very intriguing systems to study. A
large amount of experimental and theoretical work [6–11]
has also been done with neutral helium clusters contain-
ing other dopant species, neutral and ionic, embedded in
them as impurities.

Helium cluster ions are also very interesting because
the enhanced strength of the bonds associated with
the He+ ion constitutes a strong perturbation of the orig-
inal, weakly interacting van der Waals (VdW) system.
Even the simplest MO approach, in fact, is able to clearly
identify the He+

2 as having a chemical bond. It is also im-
portant to stress that such ionized aggregates have been
the subject of experimental investigations [5] which have
provided interesting results and have opened up several
theoretical problems that still have not been fully an-
swered.

a e-mail: fa.gianturco@caspur.it

A fundamental goal of such studies is to obtain reliable
information about the structural features of the ionic core
within each cluster, since the charge is usually thought to
be localized over a small number of strongly bound atoms
with the surrounding neutral atoms connected to this core
by induction and dispersion forces. An important exper-
iment [1], among others [12–14], demonstrated a marked
predominance of He+

2 fragments in the mass spectra of
very large ionized aggregates collected after break-up: this
large abundance (about 40% of the total) turned out to be
independent of the initial size of the cluster. Theoretical
studies [2] using the DIM approximation have shown the
existence of a linear triatomic core He+

3 for small clusters
(N < 8), the coexistence of the two arrangements for some
intermediate values (8 ≤ N ≤ 12) and the dominant pres-
ence of the He+

2 for larger systems. Other studies, on the
other hand [15,16], have shown the low reliability of using
DIM models for helium ions, even if they could be trusted
for studies on other rare gas clusters like Ar and Ne. The
possibility of obtaining a general structure with the He+

2
molecule constituting the core appears to be suggested
by the fairly strong ionic bond of the He+

2 moiety. It is
known, in fact, that the equilibrium distance in it is much
smaller than the neutral He–He average distance in the
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cluster (∼6 a.u.) [17], and that the corresponding disso-
ciation energies are also very different: ∼0.5 meV for the
neutral dimer, and ∼2 eV for He+

2 [18].
It is therefore important to study in detail the micro-

scopic interaction between a single atom and the He+
2 core,

in order to understand better the possible elementary dy-
namics (see also [3,19]) of the core structure formation
shown by the larger clusters. From what we have found in
our present study we shall argue that it may be reason-
able to assume that, because of the stronger interaction
that a single neutral atom experiences with the diatomic
charged core as compared to the known atom-atom po-
tential, we might be able to model the whole system of a
larger cluster He+

2 (He)n as chiefly made up of core-atom
interactions plus the perturbative effects from the neutral
He–He interactions, without having to include contribu-
tions from higher order many-body effects. However, this
specific aspect of a rather complex problem will be anal-
ysed in our future work, limiting our present study to the
generation and analysis of an accurate potential energy
surface (PES) for an ionic dimer core and an extra helium
atom.

2 The theoretical methods

In order to have a coherent picture when studying the
interaction in the ionic triatomic system (which we shall
limit, for the time being, to producing only a diatomic
fragment ion plus a neutral atom in its asymptotic break-
up) it is necessary to use a size consistent [20] ab initio
method. In fact failure to ensure the size-consistency prop-
erty in the calculations would imply that

EHe+2 (r)He(R ∼ ∞) �= EHe+2 (r) + EHe (1)

and hence the interaction energy calculated for this
asymptotic channel,

VHe+2 (r)He(R) = EHe+2 (r)He(R)− EHe+2 (r)He(∞) (2)

(where r is the core interatomic distance and R the vector
measuring distance and orientation of the third atom from
the center of mass of the core) will be in error. For this rea-
son, initial calculations carried out using the MRDCI ex-
pansion turned out not to be sufficiently accurate. Hence,
we further used the Coupled Cluster Method which turned
out to be a better choice, provided that the CCSD(T) [21]
treatment with aug-cc-pVQZ basis set was employed. All
calculations made use of the Gaussian 94 [22] package with
the expansion over a basis set that included diffuse func-
tions to yield the aug-cc-pVQZ [23] not present within
the code for He atoms. Use of Gaussian 98 with this basis
set was inefficient and still showed some problems in its
new release. Special attention had to be paid here to the
choice of the guess functions for those points of the ground
state curve of the diatomic system (Σ+

u symmetry) which
come very close to the dissociative state Σ+

g : in such sit-
uations, in fact, the INDO guess functions employed by
the program can lead to sizeable errors. Hence, it became

necessary to force the calculations to remain on the lower
curve by frequently checking the fragments’ asymptotic
behaviour, as we shall explain in the next section.

In order to satisfy the expected behaviour in the long
range region, it was also important to ensure that the
helium atom-dipole polarizability was correctly described
by the well-known asymptotic potential (LR) form of the
atom-ion interaction

E(R)LR =
1
2
αHeR

−4 (3)

where the experimental value is here given by aexp =
1.38 a.u. [24].

To further generate the bound states of the He+
2 moi-

ety we used a simple Numerov [25] algorithm, while for the
two-dimensional (2D) problem given by the atom-rigid ro-
tor system (He+

2 + He) where the bound state energies are
much weaker, we employed a Discrete Variable Represen-
tation expansion method (DVR) [26].

The latter approach involves a well known unitary
transformation of a Finite Basis Representation (FBR)
defined over some quadrature scheme associated with
the FBR polynomials. In our case we used the associated
Legendre functions for the angular part and the Morse
oscillator-like functions for the radial part, so that one
can write

HDVR = T †HFBRT (4)

and the points for the quadrature have been chosen to
produce the expected diagonal matrix for the potential
representation.

In the present case we have performed calculations
with 99 Gauss-Laguerre integration points from 3 to
18 Å on the radial grid, while using 24 points on the an-
gular grid. This method is also suitable for the three di-
mensional (3D) case by further including additional func-
tions for the vibrational part of the diatomic ion. We are
currently carrying out a complete three-particle Potential
Energy Surface (PES) description that we shall however
analyse in later work.

3 Present results

3.1 The He+
2 structure

Given the apparent simplicity of this system, the exper-
imental data of recent acquisition are still surprisingly
few [27–30]. Some experimental constants have been ob-
tained by extrapolation from the npπ 3Πg Rydberg series
of He2 and are therefore not very reliable. Its microwave
spectrum has been recorded [31], but no direct informa-
tion about its vibrational and rotational states has become
available.

In Figures 1 and 2 we contrast the present calcula-
tions (filled-in squares), which use the controlled guess
functions from the asymptotic region (thereby ensuring
a perfect agreement with the dissociative channel energy
well into the short-range region), with earlier ones per-
formed without the above constraint (open circles). The



E. Scifoni and F.A. Gianturco: Charged cores in ionized 4He clusters 325

 

Fig. 1. Computed total energy values for He+
2 system as a

function of its interatomic distance r : previous calculations
(open circles) and improved data using a controlled guess func-
tion in the evaluation of the two-electron integrals (c.a.c., filled-
in squares). In the inset the different asymptotic curves are
shown.

 

 

  

Fig. 2. Interaction energy for the two different approaches of
Figure 1 compared in the long range region with the experi-
mental atomic polarizability (α0) potential. In the legend the
extrapolated values for α0 are also shown.

size consistency is seen to be verified in the asymptotic
region where EHe+2

(∞) = −4.9023448 a.u. = EHe+ + EHe.
We also found, with the same method and basis set
expansion, that: EHe+ = −1.9998112 a.u. and EHe =
−2.9025336 a.u., thus giving exactly the same value as
that reported before. The open circles produce a slightly
different asymptotic value: E′

He+2
(∞) = −4.9022928 a.u.

The extrapolated estimate given for the polarizability
by the filled-in squares calculations is also very close to the
experiment and yields a better correlation coefficient with
the expected R−4 analytic potential than the open-circles
curve (0.999993 vs. 0.9993). This is explicitly shown by
Figure 2.

The final Potential Energy Curve (PEC) for the He+
2

ground state is shown in Figure 3 and compared there
with one of the best available He–He curves [32] to show
their marked differences. Using Morse interpolation, for

Fig. 3. Computed ground state of the He+
2 potential energy

curve compared (inset) with He2 potential from reference [32].

Fig. 4. Computed vibrational wavefunctions of the three upper
bound states of He+

2 (in arbitrary units) superimposed to the
top part of the potential well.

instance, we find that the resulting equilibrium distance of
the ionic dimer is 2.0432 a.u., in good agreement with the
experimental value (2.0416 a.u.) [29] and with other calcu-
lations that used the QCISD(T) method (2.0435 a.u.) [33].
We further see clearly that the equilibrium distance of the
neutral system is much larger (5.65 a.u.), than that of
the ionic dimer, so one could expect that during a sud-
den ionization process, e.g. occurring inside the cluster by
electron impact, the distance from the singly ionized He
atom to the surrounding neutral atoms is much larger than
the equilibrium distance in the ion dimer, a feature which
will be further discussed below. The polynomial fit of the
dimer ion PEC is available on request from the authors.

In Table 1 we report the 23 bound state energies that
we have found by Numerov Integration, as mentioned
before, while in Figure 4, we show as an example the
wavefunctions of the last three bound states obtained via
both the calculation approaches discussed in the previ-
ous section. For such states we also calculated their av-
erage radial size together with its standard deviation and
we report them in Figure 5. It is worth mentioning here
that the PEC for the neutral dimer shown in Figure 3
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Table 1. Computed and “measured” bound states for He+
2 (all energies in cm−1). ∆E0 indicates the ZPE value estimated from

calculations. The experimental energies are obtained from the experimental De, ωe and ωexe values by En = De + h̄ωe(n +
1/2) − h̄ωexe(n + 1/2)2.

c.a.c. results no c.a.c. results Experiments [29]

n En ∆En En ∆En En ∆En

23 - - −2.61 19.05 −10.99 74.70

22 −6.20 26.18 −21.66 71.45 −85.69 145.30

21 −32.38 107.47 −93.11 146.43 −230.99 215.90

20 −139.85 239.02 −239.54 226.64 −446.89 286.50

19 −378.88 339.00 −466.18 307.50 −733.39 357.10

18 −717.87 416.86 −773.68 387.93 −1090.49 427.70

17 −1134.73 487.14 −1161.61 467.50 −1518.19 498.30

16 −1621.87 555.77 −1629.11 546.07 −2016.49 568.90

15 −2177.64 625.13 −2175.18 623.55 −2585.39 639.50

14 −2802.77 695.87 −2798.73 700.22 −3224.89 710.10

13 −3498.63 767.46 −3498.95 776.04 −3934.99 780.70

12 −4266.10 839.55 −4274.99 851.09 −4715.69 851.30

11 −5105.65 911.85 −5126.08 925.77 −5566.99 921.90

10 −6017.49 983.49 −6051.85 999.88 −6488.89 992.50

9 −7000.98 1055.94 −7051.73 1072.75 −7481.39 1063.10

8 −8056.92 1128.29 −8124.48 1144.64 −8544.49 1133.70

7 −9185.21 1199.64 −9269.12 1199.26 −9678.19 1204.30

6 −10384.85 1270.17 −10468.38 1306.63 −10882.49 1274.90

5 −11655.02 1340.45 −11775.01 1356.91 −12157.39 1345.50

4 −12995.47 1410.36 −13131.92 1423.63 −13502.89 1416.10

3 −14405.83 1480.24 −14555.55 1494.62 −14918.99 1486.70

2 −15886.06 1550.04 −16050.17 1543.61 −16405.69 1557.30

1 −17436.10 1619.71 −17593.78 1547.44 −17962.99 1627.90

0 −19055.81 836.07 −19141.22 764.44 −19590.89 840.42

Fig. 5. Radial extension of He+
2 bound states: for each level

(grey lines) the position of the average r value, 〈r〉n, and its
standard deviation, σn, are plotted.

supports instead only one bound state and shows a Zero-
Point-Energy (ZPE) value that is about 99% of its well
depth [32]. It is also interesting to notice in the data of
Figure 5 the high values of the average radial distances

exhibited by the last states:

〈r〉20 = 5.502a0,

〈r〉21 = 7.342a0,

〈r〉22 = 10.805a0.

Thus, one may qualitatively expect that a Franck-Condon
type of ionization process thought to occur in the neu-
tral helium cluster may lead to dimer-ion-like structures
which resemble one of the higher excited levels of the ac-
tual dimer ion described by our calculations.

3.2 The He+
3 rigid rotor system: angular anisotropy

and bound states

In order to have a realistic estimate of the most stable
structure for the whole triatomic system we performed
first a geometry optimization [34] from which we obtain
as the global minimum a linear configuration with energy
=−7.902105 a.u. and distances R1 = R2 = 2.340a0. This
is very near to the results obtained from previous calcula-
tions (E = −7.902103, R = 2.336a0) [33].

We then kept the internuclear distance of He+
2 (r)

near its equilibrium value (2.0 a.u., for simplicity) and
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Fig. 6. Calculated angular sections of the He+
2 (r = 2.0a0)−He

potential energy surface.

�

Fig. 7. Interpolated full PES of the He+
2 (r = 2.0a0)−He sys-

tem in cylindrical coordinates. The two filled-in circles repre-
sent the positions of the two helium atoms of the core.

scanned the other Jacobi coordinates (R, the distance
from the He+

2 center of mass to the third He atom, and θ,
the angle between R and r). We employed seven an-
gles from 0◦ to 90◦ and generated R values from 2.0 to
10.0 a.u., with ∆R ≤ 0.5a0, until we obtained a merg-
ing with the analytic long-range potential which uses the
experimental polarizability value for all orientations.

The results are pictorially shown in Figures 6 and 7.
They exhibit a deep well minimum (−947.16 cm−1) in the
linear configuration at Req = 3.78 a.u. By increasing the
angle away from the linear geometries we observe a reduc-
tion of the minimum depth down to −337.05 cm−1, when
we reach a saddle point for θ = 90◦ and Rmin = 4.17 a.u.
In terms of absolute energy, the linear asymmetric min-
imum (obtained with the constraint of the req fixed dis-
tance) lies at −7.8952903 a.u., i.e. 548.5 cm−1 above the
global minimum (linear symmetric) found by optimization
calculations (see belove Fig. 10). It therefore seems fairly

Fig. 8. The seven Vλ curves (from the polynomial expansion:

Vλ(R) = 2π
∫ 1

−1
V (R, θ)Pλ(cosθ)d cos θ) for the rigid rotor sys-

tem.

clear from the above results that the preferred structure
for a triatomic cluster will be the linear symmetric one,
with the positive charge distributed over the three atoms.
For larger clusters containing more 4He atoms the effi-
ciency of the He+

2 stabilization into its equilibrium struc-
ture is likely to become more important because of in-
creased repulsive effects between a larger number of
helium atoms. The isoenergetic profiles reported by Fig-
ure 7 clearly show the two symmetric minima, the saddle-
point region and the highly repulsive core of the triatomic
system when He+

2 is taken to have reached its equilibrium
distance.

In Figure 8 we further show the calculated Vλ coeffi-
cients of the present PES as obtained from the usual ex-
pansion of the Rigid Rotor (RR) potential energy ab initio
points over Legendre polynomials. One clearly sees the
relative greater importance of the lower λ values, with
very strong contributions coming from the first anisotropic
term, V2. Using the coefficients obtained up to λmax = 12,
we can then produce a further angular interpolation of
the PES as shown by Figure 9. We report in that figure
the behaviour of the PES angular derivatives at differ-
ent R values, where we can see the strong torque acting
on the ionic dimer in the small angle regions and at shorter
distances. This feature implies strong rotational coupling
between the impinging He atom and the ionic dimer in
such regions and a weaker coupling along the perpendic-
ular geometry approach. The figure also shows that the
interaction essentially becomes angularly isotropic for dis-
tances beyond about 6.0a0.

Using the DVR method [26] we obtained, for the
J = 0 angular momentum, the 13 bound states reported in
Table 2. The ground state at −596 cm−1 lies at about 1/3
of the well depth for the minimum configuration of this tri-
atomic system, and shows, as expected, the strong “chem-
ical” nature of the interaction. We also report in Table 2
the bound states obtained using a completely different in-
tegration scheme as described in the BOUND code [35], an
outgrowth of the MOLSCAT package, based on molecular
scattering equations with different boundary conditions.
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Fig. 9. Angular behaviour of the computed PES and torques
generated by the angular coupling, ∂V /∂θ, for different dis-
tances from the center of mass (R) and as a function of the
orientation angle θ. The two panels on the right report the
values on an enlarged energy scale.

Table 2. Computed bound states for He+
2 (2.00)−He system

using the DVR and the BOUND calculations (cm−1). See text
for details.

n EDVR EBOUND

0 −596.10 −595.50

1 −366.25 −366.94

2 −334.88 −339.49

3 −243.87 −225.69

4 −185.82 −183.03

5 −147.65 −146.23

6 −115.53 −121.05

7 −80.74 −83.44

8 −55.86 −58.13

9 −36.35 −39.16

10 −26.87 −24.71

11 −9.28 −8.17

12 −1.07 −1.19

Previous calculations on the bound states for this system
were carried out by a variational analysis of the normal
coordinates [33], hence exploring the energy levels in an
unconstrained He+

3 system. In our present study we have
taken up, as a zeroth order picture, that of an imperturbed
He+

2 system, thereby keeping its isolated molecular geome-
try nearly unchanged. A comparison of these earlier results
is shown pictorially in Figure 10, where we wish to present
a qualitative view of the system and of its different coor-
dinates. The values given in brackets for the set of curves
shown in it indicate the internal distances for each system.
All the curves are a free-drawn pictorial presentation (not
to scale) of the potentials discussed here and are meant to
clarify of the present discussion. The energy scale is taken
with respect to the minimum energy value of the He+

3 as
given by the optimization calculation (see above). Exper-

Fig. 10. Schematic representation (not to scale) of the energy
profiles of the full He+

3 system along different possible coor-
dinates: the symmetric normal coordinate of He+

3 [33] (bold
curve), the radial Jacobi coordinate for the rigid rotor surface
(solid curve) and the internuclear distance r of He+

2 (dashed
curve). The value labeled “S-G” is from reference [33].

imental data exist for the triatomic system and are due
to Patterson [36], while later on Hiraoka and Mori [37]
produced the ∆H0 of the dissociation process: He+

3 (ν =
0) → He+

2 (ν = 0) + He from thermochemical data on
the reaction He+

2 + He2 → He+
3 + He. Patterson obtained

instead [36] the equilibrium constant as a function of tem-
perature and found a value for Do = 1371 ± 161 cm−1:
Hiraoka-Mori reported a value of Do = 1305 ± 52 cm−1,
having obtained it by pulsed electron-beam mass spec-
trometer data. These values compare well with our own
results: with reference to the computed triatomic ground
state energy of reference [33], listed as S–G in Figure 10,
we found a value of 1339.2 cm−1, which appears to be
within the experimental errors and much better than the
values obtained in previous work [38,39]. It is also worth
noting that the slight difference found between the value
of [33] and our dimer-atom bound state would give a dis-
sociation energy of 1387.9 cm−1, leading to an even better
agreement with the Patterson data [36].

We have also computed the spatial shapes of the wave-
functions associated with the bound states of the sys-
tem. We can see from those reported in Figure 11 that
the strong He atom localization shown by the trimer ion
ground state in its linear minimum, is gradually reduced
through the appearance of inner radial and angular nodes
in the upper states, where the associated density now
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Fig. 11. Computed probability plots for the ground and the
three highest bound states of He+

2 (r = 2.0a0)−He system
(Jtot = 0). The two filled-in circles for the ground state repre-
sent the positions of the He atoms in the He+

2 core (cylindrical
coordinates, distances in a0).

reveals a strong helium atom delocalization at the outer
rims of the molecular space: one sees clearly that the state
n = 12, for instance, shows a broad, uniform distribution
over the whole angular range of the larger radial values.
This is particularly clear from the features of the angu-
lar atomic densities reported in Figure 12 for all the nu-
clear bound states, in comparison with those of the ground
state, |0〉, also shown there (dotted curves). One sees that
the latter angular density strongly peaks in the small-
angle region, to predict the linear minimum configuration,
while all the nuclear excited states are increasingly be-
coming more broadly distributed over the whole angular
range, with the higher excited states essentially isotropic
over the angular variable. This feature points at a marked
delocalization of the additional He atom bound to the He+

2
core as the system becomes more vibrationally excited. In
Figure 13 we further show the radial expectation values
for each of the bound states mentioned before. The most
striking feature here is again given by the marked size in-
crease shown by the three highest vibrational states. This
means that if an additionally bound He atom is placed
quite far from the ionic core it will interact with the lat-
ter fairly isotropically within a large region of space. The
standard deviation values are also shown for each 〈R〉n
to further underline the marked increase of delocalization
for any additional helium atom when it occupies the upper
bound states of the trimer.

Fig. 12. Angular distributions of the probability densities from
the He+

2 (2.0)−He excited bound states obtained from our DVR
calculations and compared with that from the ground state
(dotted curves).
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Fig. 13. Radial expectation values for the [He+
2 (2.0)−He]

bound states: for each level we plotted the energy position
of the 〈R〉n, its value and its standard deviation, σn. The
shaded areas report the PES profiles at different orientation
from θ = 0◦ and up to θ = 90◦.

3.3 The He+
3 vibrating core system

We further explored additional configurations coming
from changes of the ionic dimer bond length by comput-
ing 8 different values of the interatomic distance r : from
1.0, to 1.5, 2.5, 3.0, 4.0, 6.0 and 8.0a0. The limited impor-
tance of the higher Vλ coefficients found from the previous
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Fig. 14. Mulliken charges from the present calculations for
r = 4.0 a.u. Four different orientations are shown in the four
panels and only the short-range region of the radial variable is
reported.

expansion led us to surmise that only 4 different angles in
the 0–90◦ range would be sufficient to describe realistically
the PES at each fixed value of r. The grid in R was further
extended up to 15.0 a.u. in order to produce the correct
asymptotic behaviour of the interaction for the larger r
values, where the potential well extends over a broader
range of R distances. When the internal and intermolec-
ular coordinates become comparable, in fact, it becomes
formally meaningless to identify one particular He+

2 moi-
ety because of the nature of the bonds in this system,
which now yield symmetric exchange of the charge within
the complex:

(HeAHeB)+ + HeC ←→ (HeBHeC)+ + HeA

←→ (HeAHeC)+ + HeB.

This problem affects the calculations for large r values,
where we observed some energy discontinuity at short R
distances, especially in the perpendicular configurations.
In order to understand our results, we therefore exam-
inated the Mulliken charge attributed to each He atom
as a function of the R distance for r = 4.0 a.u. The re-
sults of Figure 14 indicate that along the insertion path
for θ = 90◦ the charge locates itself symmetrically on
the external (A, B) atoms as the third (C) atom en-
ters collinearly in the middle of them (upper-left panel
of Fig. 14). For the spatially contiguous Cs structures of
approach, also shown in the figure, we see that the calcula-
tions instead provide half the charge moving onto the (C)
central atom thereby keeping the He+

2 structure between
two contiguous atoms as required here. Hence, by care-
fully controlling the guess functions given for the small-
angle approaches, we correctly obtained a consistent en-
ergy curve for the 90◦ approach which was now smoothly
going over to the other angles and always produced the
correct overall charge distribution for the He+

2 moiety as
described by two directly bound atoms during the dis-
sociation path. The problem is related to a nonadiabatic

Fig. 15. Potential energy curves for [He+
2 (r)−He] for the

θ = 0◦ orientation. The different r values are shown in the
legend.

Fig. 16. Same as in Figure 15 but for the θ = 90◦ orientation.

crossing which is present in the C2v configuration between
the nearby 2A1 and 2B1 states, as was extensively dis-
cussed in previous work of our group [40] that explored
the relevant configurations for this crossing. The feature
becomes obviously more evident for larger values of r, be-
cause in that case, for R = 0, the whole system tends to
the global minimum discussed before (R1 = R2 = 2.34a0).
This electronically nonadiabatic crossing provides an ad-
ditional fragmentation channel (He2 + He+) for the sys-
tem [40,41]: in the ground electronic state the positive
charge is distributed over the three centers of the equilib-
rium geometry, but migrates onto the central atom when
moving the relative distances to larger values. In the ex-
cited states, however, the charge is carried exclusively by
the external atoms along the break-up channel, thereby
producing also the He+ atomic ion.

In Figures 15 and 16 we report two examples of the fi-
nal results obtained for the full [He+

2 (r)−He] PES for two
of the angles and for different r values. It is evident from
what we report there that the avoided crossing, present
in the C2v configuration, lies in the repulsive region for
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Fig. 17. Computed multipolar coefficients, Vλ, obtained from
expansion on the four angles shown in the previous figures.
Only four r values are selected in the panels.

small r, while moving out to larger R distances for r val-
ues which get to be comparable with R. This particular
situation, creates a PES profile, for r ≥ 3.0a0, with the
appearance of a second minimum at very short range and
the progressive reduction of the atom-ion repulsive barrier
for larger θ and larger bond distances of the dimer ion.

When looking at the Vλ coefficients for the
stretched He+

2 bond in the complex, given in Figure 17,
we see strong contributions from the anisotropic coeffi-
cients even for a small stretching of the core geometry.
For r = 2.5a0, in fact, the V2 term is already stronger
than the spherical coefficient. Such an effect is probably
due to the presence of a “reactive” region in the system
which is reached when the three relative distances (r1, r2,
r3) become comparable.

One can also profitably consider a sort of “Pseudo
Rigid Rotor” system with a “stretched” He+

2 core kept
fixed at an interatomic distance r1 > req during the cal-
culations of the complex bound states. Such a picture im-
plies that a primarily excited ionic dimer core could, to a
first approximation, be treated as only weakly distorted by
its interaction with the added He atom, especially for the
larger R distances. Thus, to compute the PES at r = 2.5a0

means that one is looking at the He+
2 moiety being already

excited around its seventh vibrational level (see Fig. 5)
and interacting now with an outer helium atom. The re-
sulting well region turns out to become much deeper than
the one associated with the req geometry and therefore the
number of bound states obtained using the DVR method
becomes larger, as reported by Table 3. We further show in
Figure 18 the probability density plots of the ground states
and of the last three excited states of the “stretched” ro-
tor, together with their radial expectation values. It is in-
teresting to note that the ground state becomes here even
more localized and more compact than that in the req con-
figuration, signifying a generally attractive effect from the
stretching of the ionic core. The higher bound states of
the complex, although preserving their delocalized nature
over angles as discussed before, are now located closer to
its inner core. This strong coupling effect is a signal that at

Table 3. Computed bound energies, En, and energy spacings,
∆En, for the [He+

2 (2.50)−He] system. All values in cm−1.

n En ∆En

0 −4044.27 445.22(ZPE)

1 −3333.76 710.51

2 −3244.72 89.04

3 −2657.05 587.68

4 −2572.68 84.37

5 −2478.51 94.18

6 −2017.80 460.71

7 −1940.13 77.66

8 −1855.15 84.99

9 −1777.40 77.75

10 −1420.69 356.71

11 −1354.46 66.22

12 −1283.18 71.28

13 −1220.05 63.13

14 −1168.70 51.35

15 −892.32 276.38

16 −828.77 63.56

17 −781.73 47.04

18 −739.95 41.78

19 −685.00 54.95

20 −607.24 77.75

21 −496.05 111.20

22 −440.04 56.01

23 −389.18 50.86

24 −322.13 67.06

25 −252.35 69.78

26 −243.06 9.29

27 −204.96 38.09

28 −178.00 26.96

29 −151.42 26.57

30 −116.54 34.88

31 −84.84 31.70

32 −82.81 2.03

33 −70.63 12.18

34 −42.72 27.91

35 −32.26 10.46

36 −13.15 19.11

37 −2.49 10.65

short distances it is not realistic anymore to consider the
system as made up from an almost unperturbed diatomic
core and an outside, third He atom. It therefore becomes
necessary to determine in detail the whole He+

3 PES us-
ing the three strongly correlated Jacobi coordinates which
describe it.

4 Present conclusions

We have computed and analyzed in detail a new, accu-
rate potential energy profile of the He+

3 system and found
it to be in good agreement with available experimental
data [36,37] and with earlier, more limited calculations.
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Fig. 18. Probability densities and radial observables for the
ground and the three highest bound states (DVR) for the
[He+

2 (r = 2.5a0)−He] system, Jtot = 0. The two filled-in cir-
cles on the ground state represent the positions of the two He
atoms in the He+

2 stretched core (distances in a0).

We have seen from our analysis that quite a bit of infor-
mation could already be obtained from the a fixed-nuclei
dimer ion calculations, the most important of them being
the confirmation of the expected isotropic long-range in-
teraction of such ionic core with an additional He atom
when the system is vibrationally hot: such a picture could
be already used to understand, at the qualitative level, the
experimental evidence found for the existence of such a
core in larger ionic clusters: the many additional adatoms
could all equally contribute to collisionally “cooling off”
the excited dimer moiety produced by single-atom ioniza-
tion in the neutral clusters. Our recent model calculations
for the time-dependent evolution of the trimer photoion-
ization [42] indeed point to the production of highly ex-
cited He+

2 ions after the primary process.
Extending our calculations to a vibrating core reveals

the nonadiabatic crossing between 2A1 and 2B1 states
which is present in the C2v configuration. For a “stretched
core” system, within an adiabatic picture of the interac-
tion between a vibrationally excited He+

2 and another He
atom, we also found a broad angular delocalization for the
“hot” vibrational states that indicates again the possible
formation of a transient bound state with the surround-
ing atoms located isotropically within the larger clusters
considered in the experiments [1].

All the above is, of course, still rather speculative and
we further need to employ the present PES to provide de-
tailed dynamical data at a more quantitative level. They
could be obtained for the microscopic process of ionic nu-

cleation by employing the present PES for a quantum
study of the collisional inelastic dynamics within the clus-
ter. This is currently in progress and will be reported by
our group in a following publication focussed on the colli-
sional cooling dynamics after initial ionization [43].

The actual polynomial interpolation coefficients for the
multipolar expansion representing the Rigid-Rotor PES
are available on request from the authors.
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